Accelerated aging protocols are key to medical device development. For initial product design, manufacturers of medical devices would like to know how their devices will respond to an in vivo environment, for a time period that could extend to decades in the case of permanent implants. For product labeling and regulatory, the manufacturer needs to be able confidently report an acceptable shelf-life for their devices before implantation or use. Shelf-life timeframes are often 2 years, and sometimes as long as 5 or more years. Clearly, this extent of time is too long for a real time aging study at room temperature.
As a result, manufacturers turn to accelerated aging protocols. For shelf-storage, there are a few ASTM methods that are used by device manufacturers. The most popular technique is described in ASTM F1980, which uses increased temperature to accelerate the kinetics of degradation of the materials. In this method, samples are usually placed in a convection oven for a period of time in their final packaging. A relatively simple expression is used to compute the accelerated aging factor, AAF
AAF=Q10^[(Ta - Trt)/10]
where Ta is the accelerated aging temperature, Trt is room temperature, and Q10 is an aging pre-factor that depends on the material. Ideally, the Q10 parameter is determined by comparing real time testing to accelerated aging testing, picking a parameter (such as tensile strength) to monitor. By measuring this parameter at multiple times during the aging study, one can construct a relationship between this property and aging time. Determining the equivalent amount of time to reach the same change in property at the different aging temperatures allows you to calculate your AAF. Know AAF and Ta, you can now calculate Q10 for your material. The Q10 will sometimes depend on temperature, as shown in the bottom graph. This plot was generated using the variable Q10 method, whereby short term real-time aging data was extrapolated to long term values as indicated.
Catalyst powder for chemical reactions is often formed into a packed bed and placed into a reactor vessel. In packing the catalyst, the formation of smaller particles, or fines, can occur if the packing pressure exceeds a critical value. This fine formation is undesirable, as it increases the potential for bed compaction and subsequent increase in pressure in the reactor.
In ASTM D7084, "Determination of bulk crush strength of catalysts and catalyst carriers," the crush pressure required to generate 1 wt.% of fines is determined, where 'fines' are defined as particles passing through a mesh size that is half the diameter of the catalyst pellet. Multiple compression loads are used, and the results are interpolated to determine the pressure that yields 1 wt.%.
Cambridge Polymer Group performs ASTM D7084. Please contact us for more information.
The FDA has cleared ECiMA(tm), a highly crosslinked polyethylene containing Vitamin E, for use in hip arthroplasties. ECiMA is sold by Corin, and was developed by researchers at Cambridge Polymer Group and the Massachusetts General Hospital. ECiMA was developed as a second generation highly crosslinked UHMWPE to replicate the good wear properties of the first generation highly crosslinked UHMWPEs, while having improved mechanical properties and oxidation resistance.
View the 510(k) application.
This technology is available for license.
Johnson & Johnson has continued to investigate their metal-on-metal implants, which were recalled in 2010 due to some patients reactions to metal debris generated during articulation. In a Reuter's report today, J&J had fourth quarter charges of $800 million associated with medical costs related to the recall.