Microplastics in Infusion Bags: A Growing Concern
Microplastics have become a pressing topic in environmental and health discussions, with increasing attention from the media and scientific community. These tiny plastic particles, typically defined as ranging in size from 1 micrometer to 5 millimeters, can be composed of various types of polymers and are now being detected in an array of consumer products. A recent study by Huang et al. (2025)[1] examined the presence of microplastics in intravenous (IV) infusion bags, a common component of medical treatment.
What Are IV Infusion Bags?
IV infusion bags are flexible containers designed to deliver aqueous solutions, such as drugs, electrolytes, or saline, directly into a patient's bloodstream. Given their direct interaction with the body, the potential presence of microplastics in these containers may be of concern.
Key Findings from Huang et al.'s Study
Huang's study focuses of two brands of saline IV bags made from polypropylene. The contents of these bags were filtered, and the researchers employed Raman spectroscopy, scanning electron microscopy (SEM), and optical microscopy to identify and quantify the particles in the filtrate. The Raman spectroscopy confirmed that the particles were polypropylene. Particle counts revealed concentrations between 7020-7900 particles per liter of saline, with the majority (68%) measuring between 1-10 micrometers, and an overall size range of 1-62 micrometers.
The study did not speculate on how these microplastics entered the IV bags.
Health Implications
The authors note that microplastics have previously been discovered in human blood and adjacent organs, including the lungs, liver, kidneys, and spleen. Scientists at Cambridge Polymer Group are actively engaged in identifying and quantifying microplastics in products and tissues and in a recent study, we have detected microplastics in multiple lung tissue samples. The health implications of these microplastics remain uncertain at this time.
Regulatory Standards for Particulates
According to USP <788> Particulate Matter in Injections, the limits for particles exceeding 10 micrometers should not surpass 12,000/L and 2,000/L for particles greater than 25 micrometers in containers holding more than 100 ml of solution. For containers with less than 100 ml, the limits are set at 3,000 particles (>10 micrometers) and 300 particles (>25 micrometers) per container. While the concentrations of microplastics found in Huang's study fall within these regulatory limits for larger particles (>10 micrometers), the sheer number of smaller particles raises questions about whether current standards adequately address this emerging issue.
What’s Next?
The detection of microplastics in IV infusion bags highlights a critical gap in our understanding of their potential health impacts. Further research is needed to explore:
- How microplastics enter medical products during manufacturing or storage.
- The long-term effects of introducing microplastics into the human body through medical treatments.
- Whether existing regulatory standards should be updated to account for smaller particles.
As scientists continue to investigate this issue, healthcare providers and manufacturers must remain vigilant about minimizing contamination risks. In parallel, regulatory bodies may need to revisit particulate limits to ensure patient safety in light of emerging evidence on microplastics.
By shedding light on studies like Huang et al.'s, we can better understand and address this growing concern—ensuring that medical products meet the highest standards of safety and efficacy.
[1] Huang, T., et al. (2025). "MPs Entering Human Circulation through Infusions: A Significant Pathway and Health Concern." Environment & Health. https://doi.org/10.1021/envhealth.4c00210